$$
\begin{align*}
\mathbf{S}_{T}= & \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}\right)^{T}  \tag{12.36}\\
= & \sum_{\gamma=1}^{\Gamma} \sum_{\mathbf{x} \in \mathscr{X}_{\gamma}}\left(\mathbf{x}-\boldsymbol{\mu}_{\gamma}+\boldsymbol{\mu}_{\gamma}-\boldsymbol{\mu}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{\gamma}+\boldsymbol{\mu}_{\gamma}-\boldsymbol{\mu}\right)^{T}  \tag{12.37}\\
= & \sum_{\gamma=1}^{\Gamma} \sum_{\mathbf{x} \in \mathscr{X}_{\gamma}}\left(\mathbf{x}-\boldsymbol{\mu}_{\gamma}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{\gamma}\right)^{T}+ \\
& \sum_{\gamma=1}^{\Gamma} N_{\gamma}\left(\boldsymbol{\mu}_{\gamma}-\boldsymbol{\mu}\right)\left(\boldsymbol{\mu}_{\gamma}-\boldsymbol{\mu}\right)^{T} \tag{12.38}
\end{align*}
$$

The first term in Equation 12.38 is identical to $\mathbf{S}_{W}$ of Equations 12.33. The second term seems to have the properties stated at the beginning of this section. In fact, we can call that the between class scatter matrix, giving us the following definition of $S_{B}$ [8],

$$
\begin{equation*}
\mathbf{S}_{B} \stackrel{\Delta}{=} \sum_{\gamma=1}^{\Gamma} N_{\gamma}\left(\boldsymbol{\mu}_{\gamma}-\boldsymbol{\mu}\right)\left(\boldsymbol{\mu}_{\gamma}-\boldsymbol{\mu}\right)^{T} \tag{12.39}
\end{equation*}
$$

Therefore, based on Equations 12.38, 12.33, and 12.39, the total scatter matrix may be written in terms of the within class and between class scatter matrices as follows,

$$
\begin{equation*}
\mathbf{S}_{T}=\mathbf{S}_{W}+\mathbf{S}_{B} \tag{12.40}
\end{equation*}
$$

At this point, we have the between and within scatter matrices (hence covariances) of random variable, $X$, estimated based on the observation of $N$ samples of $X$. The objective of linear discriminant analysis ${ }^{5}$ is to maximize discriminability by performing a transformation $\left(T: \mathscr{R}^{(\Gamma-1)} \mapsto \mathscr{R}^{D}\right)$ on $X$ such that the transformed random variable, $Y: \mathbf{y} \in \mathscr{R}^{(\Gamma-1)}$ would have maximal ratio of the determinant of the between class scatter matrix to the determinant of the within class scatter matrix. The determinant is used since it is equal to the product of the Eigenvalues of the matrix and an indication of the geometric mean (Definition 6.79), of the Eigenvalues.

Let us define the following linear transformation for discriminant analysis of $X$,

$$
\begin{align*}
\mathbf{y}_{n} & =T\left(\mathbf{x}_{n}\right)  \tag{12.41}\\
& \stackrel{\Delta}{=} \mathbf{U}^{T} \mathbf{x}_{n} \tag{12.42}
\end{align*}
$$

where $\mathbf{U}: \mathscr{R}^{(\Gamma-1)} \mapsto \mathscr{R}^{D}$ is a rectangular matrix and $(\Gamma-1)<D$. Therefore, the between class and within class scatter matrices of $Y$ may be written in terms of those of $X$ and the transformation matrix $\mathbf{U}$, as follows,

$$
\begin{align*}
\mathbf{S}_{B}(Y) & =\mathbf{U}^{T} \mathbf{S}_{B}(X) \mathbf{U}  \tag{12.43}\\
\mathbf{S}_{W}(Y) & =\mathbf{U}^{T} \mathbf{S}_{W}(X) \mathbf{U} \tag{12.44}
\end{align*}
$$

[^0]
[^0]:    ${ }^{5}$ Called multiple discriminant analysis[8] when there are more than two classes involved $-\Gamma>2$.

