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hn = h(nT )

Ĥk = H

(

ω =
2πk

NT

)

(24.436)

Then, in discrete form, the integral of Equation 24.390 changes to a finite sum of

the N values of the signal with dt → T . Therefore,

Ĥk =
N−1

∑
n=0

hne
−i 2πk

N�T
n�T

T

=
N−1

∑
n=0

hne−i 2πkn
N T (24.437)

To make the Discrete Fourier Transform independent of the sampling frequency, we

define the Discrete Fourier Transform Hk such that

Ĥk = HkT (24.438)

Therefore, the Discrete Fourier Transform (DFT) is defined as,

Hk =
N−1

∑
n=0

hne−i 2πkn
N (24.439)

Note that there is also another type discretized Fourier transform called Discrete-

Time Fourier Transform and it should not be confused with the subject of this sec-

tion which is Discrete Fourier Transform.

24.10.1 Inverse Discrete Fourier Transform (IDFT)

Now, to compute the inverse Discrete Fourier Transform, consider the inverse Com-

plex Fourier Transform, Equation 24.391, and discretize it by having dω →
2ωc
N

=
2π

NT
, then, the discretized version of Equation 24.391 will become,

hn =
1

2π

N−1

∑
k=0

Ĥkei 2πk
NT nT 2π

NT

=
1

��2π

N−1

∑
k=0

Hk@T e
i 2πk

N�AT
n�AT ��2π

N@T

=
1

N

N−1

∑
k=0

Hkei 2πkn
N (24.440)

Therefore, Equations 24.441 and 24.442 are the DFT and IDFT respectively,
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Hk =
N−1

∑
n=0

hne−i 2πkn
N (24.441)

hn =
1

N

N−1

∑
k=0

Hkei 2πkn
N (24.442)

It is customary to define a factor called the twiddle factor in the following way,

WN
∆
= ei 2π

N (24.443)

Therefore, Equations 24.441 and 24.442 may be expressed in terms of WN as fol-

lows,

Hk =
N−1

∑
n=0

hnW−kn
N (24.444)

hn =
1

N

N−1

∑
k=0

HkW
kn
N (24.445)

The DFT is generally a set of complex numbers. If we have a real signal (which

is the case for speech samples), then, since the hn are real, when k = 0, the exponent

in Equation 24.441 becomes 0, making the exponential term 1 for all the elements

of the summation. Therefore, H0 becomes real. This term is called the DC term.

Also, when N is even (which is usually the case with DFT implementations), then

for k = N
2

, the exponential term of the summation may be written as,

e−i 2πkn
N = e

−i
C2π(�N

C2
)n

�N

= e−iπn

= cos(nπ)+ isin(nπ)

= ±1

This means that the value of the DFT for the folding frequency, fc is also real.

Also, the real-ness of the signal means that,

Hk = HN−k ∀ 0 < k <
N

2
(24.446)

Since H0,HN
2
∈R as shown earlier, we may add these two cases to the list in Equa-

tion 24.446 so that,

Hk = HN−k ∀ 0 ≤ k ≤
N

2
(24.447)

where N is even.

Note the similarity of the IDFT to DFT. In a practical sense, with slight mod-

ifications, the DFT may be used to compute the IDFT. This is done in practice.
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Therefore, there is only need for the implementation of one side of the algorithm,

the DFT. Later, we will see that there are efficient techniques for computing the

DFT. Fast Fourier Transform is one such algorithm which will be discussed later.

24.10.2 Periodicity

Now, consider Hk+N ,

Hk+N =
N−1

∑
n=0

hne−i
2π(k+N)n

N

=
N−1

∑
n=0

hne−i 2πkn
N e

−i 2π�Nn

�N

=
N−1

∑
n=0

hne−i 2πkn
N

= Hk (24.448)

Equation 24.448 suggests that the set of Hk is periodic with period N.

In the case where we have a real signal (such as speech), then by only knowing

the first N
2

+ 1 elements, we will know the information for any index since the el-

ements from N
2

+ 1 to N − 1 are complex conjugates and easily determined by the

first N
2

+1 elements and the indices for N and higher are just periodically related to

the first N numbers.

To recapitulate, H0 corresponds to the DC level, HN
2

corresponds to fc. In-

dices 0 < k <
N
2
− 1 corresponds to 0 < f < fc and N

2
+ 1 < k < N correspond

to − fc < f < 0.

24.10.3 Plancherel and Parseval’s Theorem

Following the example of Parseval’s Theorem for the Complex Fourier Series (Sec-

tion 24.6.2) and the Complex Fourier Transform (Section 24.9.7), it may easily be

shown that for two sampled signals, gn and hn,

N−1

∑
n=0

gnhn =
1

N

N−1

∑
k=0

GkHk (24.449)


